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Abstract

Validation comparisons between satellite-based surface energy balance models and tower-based flux measurements over heterogeneous
landscapes can be strongly influenced by the spatial resolution of the remote sensing inputs. In this paper, a two-source energy balance model
developed to use thermal and visible /near-infrared remotely sensed data is applied to Landsat imagery collected during the 2004 Soil Moisture
Experiment (SMEX04) conducted in southern Arizona. Using a two dimensional flux-footprint algorithm, modeled surface fluxes are compared to
tower measurements at three locations in the SMEX04 study area: two upland sites, and one riparian site. The effect of pixel resolution on
evaluating the performance of the land surface model and interpreting spatial variations of land surface fluxes over these heterogeneous areas is
evaluated. Three Landsat scenes were examined, one representing the dry season and the other two representing the relatively wet monsoon
season. The model was run at three resolution scales: namely the Landsat visible/near-infrared band resolution (30 m), the Landsat 5 thermal band
resolution (120 m), and 960 m, which is nominally the MODIS thermal resolution at near-nadir. Comparisons between modeled and measured
fluxes at the three tower sites showed good agreement at the 30 m and 120 m resolutions — pixel scales at which the source area influencing the
tower measurement (∼100 m) is reasonably resolved. At 960 m, the agreement is relatively poor, especially for the latent heat flux, due to sub-
pixel heterogeneity in land surface conditions at scales exceeding the tower footprint. Therefore in this particular landscape, thermal data at 1-km
resolution are not useful in assessing the intrinsic accuracy of the land-surface model in comparison with tower fluxes. Furthermore, important
spatial patterns in the landscape are lost at this resolution. Currently, there are no definite plans supporting high resolution thermal data with
regular global coverage below ∼700 m after Landsat 5 and ASTER fail. This will be a serious problem for the application and validation of
thermal-based land-surface models over heterogeneous landscapes.
Published by Elsevier Inc.
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1. Introduction

Remote sensing-based land surface models have demon-
strated ability to provide spatially distributed estimates of
energy fluxes/evapotranspiration (ET) over large areas (e.g.,
Diak et al., 2004). However, the ability to capture the full range
of variability in the fluxes is dependent on the resolution of the
remote sensing data. For example, in a relatively homogeneous
cropping region in Iowa where over 90% of vegetation cover is
either corn or soybean, Kustas et al. (2004a) found that when the
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resolution is N500 m, fluxes from the two crops could not be
easily distinguished. Clearly, for landscapes with significant
variability in vegetation cover, type/architecture, and moisture,
the spatial resolution of the remote sensing data is crucial for
discriminating fluxes for the different land cover types and
hence avoiding significant errors due to application of a land
surface model to a mixed pixel containing large contrasts in
surface temperature and vegetation cover (Kustas & Norman,
2000a; Moran et al., 1997).

Operationally, many applications in the western U.S. require
assessment of ET variability at high spatial resolutions of 102 m
and finer. To accurately characterize ET or moisture stress for
even a single relatively large agricultural field (∼500×500 m),
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for example, there needs to be several within-field pixels to
allow averaging and to clearly distinguish contributions from
adjacent fields. Water managers must account for evaporative
losses along canals and riparian corridors (∼101–102 m wide)
in planning for water distribution within irrigation districts.
Moreover, to properly validate remote sensing land surface
models, the model grid must resolve the surface footprint of the
flux measurement device, which is typically a tower-based eddy
covariance system with a source-area/flux-footprint of a few
100 m or less. For grids coarser than the measurement footprint,
model-measurement differences over heterogeneous landscapes
will not necessarily be representative of the intrinsic model
accuracy (Anderson et al., 2004).

Current operational thermal sensors are at relatively coarse
resolution (∼1 km forMODIS—Moderate Resolution Imaging
Spectroradiometer), making it difficult to account for the spatial
variation in fluxes for many landscapes. Unfortunately, it also is
not certain whether future Landsat programs will support a high
resolution (∼100 m) thermal band sensor. The main objective of
this paper is to determine if and how restriction to MODIS-
resolution thermal data will limit our ability to apply and validate
remote-sensing-based energy balance models over heteroge-
neous surfaces.

To investigate the impact of model/remote sensing resolution
on flux estimation, three Landsat 5 Thematic Mapper (TM)
scenes collected during the 2004 Soil Moisture Experiment
(SMEX04) conducted in southern Arizona and Mexico were
combined with local meteorological measurements to drive
simulations from a remote sensing-based land surface model
during the dry and wet/monsoon seasons. We focus on three
landscapes featuring different types of spatial structure: two
upland sites, one with grass cover and patches of shrubs
correlated with the terrain and the other with relatively uniform
sparse shrubland cover; and a riparian site near the San Pedro
River. The impact of resolution on variability in model land
surface fluxes is examined for these semiarid heterogeneous
landscapes, where 1-km pixels may represent a mixture of
Fig. 1. Schematic diagram illustrating the resistance network for the TSM. Also
shown are the flux partitioning between soil (subscript S) and canopy (subscript
C) and key model inputs. Symbols are defined in the text.
relatively low evapotranspiration for the upland areas and high
values from the riparian corridor.

2. The model

The model used in this study is the series version of the Two-
Source-Model (TSM) developed by Norman et al. (1995). The
formulations presently used in the TSM are described in Kustas
andNorman (1999), andmore recently in Li et al. (2005), with the
resistance network and modeling framework illustrated in Fig. 1.
In the TSM, the key remotely sensed variables are radiometric
surface temperature (TR) and vegetation cover fraction (fC). The
model partitions TR between the vegetation and soil components
within the scene, weighted by fC:

TRðhÞc½ fCðhÞT4
C þ ð1� fCðhÞÞT4

S �1=4 ð1Þ
whereTC is canopy temperature, TS is soil temperature and fC(θ) is
the fractional vegetation cover at the thermal sensor view angle θ.

The sensible heat flux (H ) is also partitioned between the
vegetated canopy (HC) and soil (HS):

H ¼ HC þ HS ¼ qCP
TAC � TA

rA
ð2Þ

HC ¼ qCP
TC � TAC

rX
ð3Þ

HS ¼ qCP
TS � TAC

rS
ð4Þ

where ρCP is the volumetric heat capacity of air (Jm−3 K−1),
TAC is the air temperature in canopy-air space, TA is the air
temperature, rA is the aerodynamic resistance to heat transfer
across the canopy-surface layer interface (Kustas & Norman,
1999), rX is the total boundary layer resistance of the complete
canopy of leaves (see Kustas & Norman, 1999) and rS is the
resistance to heat flow in the boundary layer immediately above
the soil surface (see Kustas & Norman, 1999). In the current
application of the model, both TA and TR(θ) are from the
observations (i.e., TA from the on-site flux tower and TR(θ)
from Landsat thermal observations), whereas TS, TC and TAC
are computed by the TSM. The resistance terms rX, rA and rS
are largely influenced by vegetation properties, wind speed and
atmospheric stability (see Kustas & Norman, 1999; Kustas
et al., 2004b; Norman et al., 1995).

The latent heat flux from the vegetated canopy (LEC) is
initially computed from the Priestley–Taylor formulation:

LEC ¼ aPT fG
D

Dþ g
RnC ð5Þ

where γ is the psychrometric constant (≈67 PaK−1), Δ is the
slope of the saturation vapor pressure verses temperature curve,
αPT is Priestley–Taylor parameter (∼1.3), fG is the fraction of
the leaf area index (LAI) that is green, and RnC is divergence of
net radiation within the vegetative canopy layer is described by
Kustas and Norman (1999, 2000b).
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The surface soil heat flux (G) is estimated as a fraction of net
radiation just above soil surface, RnS

G ¼ CGRnS ð6Þ
where CG∼0.35, and has been expressed as a function of time
to accommodate known temporal variation in this “constant”
(Santanello & Friedl, 2003).

With the above system of equations, energy conservation for
the canopy component (RnC=LEC+HC) and for the soil
(RnS=LES+HS+G), and the initial assumption of unstressed
conditions, a solution for both the thermal/radiation balance and
the turbulent heat fluxes for the soil and canopy components can
be achieved. More details on model convergence and
methodology for computing fluxes under stressed vegetation
conditions where Eq. (5) is not valid are discussed in Kustas
et al. (2004b).

It is important to point out that the TSM was developed to
deal with partial canopy cover conditions and that it has greater
utility thanmost other remote sensing-based land surfacemodels
that do not consider differences in soil and canopy contributions
Fig. 2. Approximate location and local surface conditions of the three tower sites ope
location noted, LH is Lucky Hills, KE is Kendall and CH is Charleston, and photos
to the radiative temperature and convective/energy exchanges
(Norman et al., 1995). Single-source models that do not
explicitly treat the difference between the soil and canopy
exchange coefficients (resistances), rS and rX, often require
empirical bulk “extra resistance” factors to reproduce measured
sensible heat fluxes, especially in dry, arid regions with sparse
vegetation (e.g., Stewart et al., 1994; Verhoef et al., 1997).

3. Data and methods

3.1. Site and field experiment description

SMEX04 was conducted in southern Arizona and Mexico
during the July to August monsoon season of 2004. This paper
focuses on a study area in Arizona that includes an upland dry
region where most vegetation is shrub and grass with 20% to
40% cover and a relatively wet riparian area where most
vegetation is mesquite forest with cover fraction ranging
between 60% and 90%. The climate is classified as semi-arid
with mean annual precipitation around 400 mm. During the
rating during SMEX04 where (a) is a Landsat false color image with three tower
of the (b) Lucky Hills, (c) Kendall and (d) Charleston tower sites.
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experiment, two eddy covariance flux towers were operating in
the upland areas: one in a shrubland subwatershed (Lucky Hills,
31.744° N Lat./110.052° W Long.) and another in a grassland
subwatershed (Kendall, 31.737° N Lat./109.942° W Long.).
Both episodic surface energy balance measurements (Stannard
et al., 1994) and longer term observations (Emmerich, 2003)
have been conducted at these subwatersheds prior to SMEX04.
The other flux tower was located in a riparian woodland site
(Charleston 31.664° N Lat./110.178° W Long.) east of the San
Pedro River and has observations spanning over several years
(Scott et al., 2004). In addition to the energy fluxes, the towers
provided measurements of local meteorological conditions,
including solar radiation, air temperature, vapor pressure and
wind speed, all used as input for the TSM scheme.

In Fig. 2, a Landsat false color image shows the USDA-ARS
Walnut Gulch Experimental watershed boundary, a key test site
for past interdisciplinary field experiments in this region
(Goodrich et al., 2000; Kustas and Goodrich, 1994), and the
approximate locations of the three eddy flux towers. In addition,
a photo taken at each of the flux tower locations is shown,
providing a qualitative assessment of the vegetation conditions
Fig. 3. Land cover/land use and percentage vegetation cover fraction (%) maps (30
Charleston tower sites for the June 11 (dry season) and July 29 (monsoon season) 2
for these sites. The Lucky Hills site at an elevation of ∼1370 m
above mean sea level (amsl) had the lowest vegetation cover at
∼25%, on average, consisting primarily of ∼1 m tall mesquite
shrub. The Kendall subwatershed at an elevation of ∼1531 m
amsl is predominately upland grassland with ∼40% cover and
∼0.3 m canopy height, on average. The Charleston site at 1199
amsl is located in a riparian mesquite forest having ∼7 m tall
vegetation at roughly 75% cover. Fractional vegetation cover
conditions have significant spatial variability and are strongly
influenced by climatic factors, namely the duration of the dry
season and amount and duration of rainfall during the wet or
monsoon season. A summary document of the SMEX04 project
can be accessed via the web at http://www.ars.usda.gov/
Research/docs.htm?docid=8995.

Land cover/land use information and vegetation cover
fraction fields for a ∼3×3 km area encompassing each flux
tower site are shown in Fig. 3. The fC fields are computed using
the Normalized Difference Vegetation Index (NDVI; see Sec.
3.3) derived from Landsat 5 images collected on June 11 during
the dry season and on July 29 during the “monsoon” or wet
season (see below). Between the June and July overpasses there
m resolution) for a ∼3×3 km area encompassing the Lucky Hills, Kendall and
004 Landsat 5 overpass dates.

mailto:Fuqin.Li@ars.usda.gov
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Fig. 4. Comparison of the sum of the measured turbulent fluxes (H+LE) from
the eddy flux towers versus the available energy (Rn−G) for assessing energy
balance closure. Dashed line represents perfect agreement.
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is a “green up” particularly for the Kendall site and the grassland
cover type as well as for areas along the riparian corridor for the
Charleston site. For Lucky Hills, which is almost uniformly
shrubland, there is no significant change in fC. The slight
decrease in fC observed at Lucky Hills falls within the expected
errors related to the atmospheric correction of the NDVI bands,
and hence may not truly reflect actual changes in vegetation
cover conditions. Rain gauge observations for June and July
prior to the July 29 overpass indicated that the Kendall site
received 63 mm of rain compared to only 22 mm at Lucky Hills,
which may help explain the lack of any measurable increase in
green vegetation at the Lucky Hills site.

The differences in the vegetation cover/land use and vegetation
cover/greenness patterns will have a significant effect on the
model results. For Kendall and Lucky Hills, the spatial patterns of
low and high evaporative flux correlate with the local topography,
where dissected ephemeral channels generally support larger
vegetation having deeper rooting systems, while the drier ridges
have less available root-zone moisture and hence have lower
vegetation cover. The only caveat to this is during the monsoon
season where more frequent precipitation can support the green-
up of vegetation (grasses primarily) wherever they exist in the
landscape. For the Charleston site, the available water along the
San Pedro River amplifies the difference in the amount and size of
vegetation cover with the drier upland areas.

3.2. Micrometeorological data

Local meteorological data required by the model – namely
solar radiation, air temperature, vapor pressure, and wind speed
and direction – were acquired with instrumentation mounted on
the flux towers several meters above the canopy. In addition, each
tower was equipped with an infrared thermometer (IRT) to
measure radiometric surface temperature. The tower-based
radiometer datawere used to interpret and validate the atmospheric
correction of the Landsat surface temperature imagery.

The flux towers were also equipped with instruments
measuring net radiation, soil heat flux, as well as sensible,
latent, momentum and CO2 flux using the eddy covariance (EC)
technique. The 3-dimensional sonic and fast response water
vapor/CO2 sensors were maintained at a minimum nominally
two times the canopy height (i.e., 2hC) to minimize roughness
sublayer effects. Measurement heights for the EC sensors used
in the present study were at approximately 3 m above local
topography at Lucky Hills, 2 and 10 m at Kendall (Kendall site
had two eddy covariance sensor systems) and 13 m at the
Charleston site. The instrument set-up and measurement
system/design for all three sites were similar with corrections
to the raw eddy covariance data following the procedures
summarized in Scott et al. (2004).

As is the case with most study sites employing the eddy
covariance technique, there is a general lack of energy balance
closure among the flux measurements (Twine et al., 2000).
Possible causes for closure residuals include instrumental
effects, post-processing corrections applied to the turbulence
data, the length of the sampling interval, and the heterogeneity
of the landscape, just to name a few (Foken et al., 2006). For the
flux observations during the Landsat overpass times, a
comparison of available energy Rn−G versus the turbulent
fluxes H+LE indicates a closure residual of ∼80 W m−2 on
average (Fig. 4). This translates to approximately a closure ratio
(H+LE) / (Rn−G) of ∼80%, similar to results found for the
Ameriflux sites (Wilson et al., 2002). Since the TSM requires
energy conservation, closure in the flux measurements was
enforced through a residual method; that is, LE for the tower
measurements was recalculated as the residual of the surface
energy budget, namely LERE=Rn−G−H. Although this as-
sumes measurement errors are entirely in LE, there are a few
studies that suggest EC measurements tend to be more problem-
atic for latent heat than for sensible heat (Li et al., 2005).

3.3. Remote sensing data

During the SMEX04 field campaign, three Landsat TM
scenes were collected over the experiment area. As mentioned
earlier (see Fig. 3), one scene was acquired during the dry
season on June 11, 2004 and other two were obtained during the
wet monsoon season on July 29, 2004 and August 30, 2004,
respectively. The Landsat images were used to derive land-use
classifications, fractional vegetation cover and LAI, and radio-
metric surface temperature (TR) over the study sites using
atmospheric correction techniques described by Li et al. (2004).
Fractional cover was obtained from the NDVI using a rela-
tionship suggested by Choudhury et al. (1994):

fC ¼ 1� NDVImax � NDVI
NDVImax � NDVImin

� �a

ð7Þ

where a is a function of canopy architecture, but for most veg-
etation is typically set equal to 0.7, and NDVImax and NDVImin



Table 1
Values of key TSM inputs and parameters for the three main land cover classes
in the Walnut Gulch experimental site

Land cover hC (m) w (m) Ω(0) (–) αPT (–) fG (–)

Grass 0.3 0.01 0.8 1.3 1
Shrub 1 0.05 0.8 1.3 1
Mesquite forest 7 0.05 1 1.3 1

hC: canopy height.
w: leaf width.
Ω(0): nadir clumping factor.
αPT: Priestley–Taylor parameter.
fG: fraction of green vegetation.

342 F. Li et al. / Remote Sensing of Environment 112 (2008) 337–349
represent typical values associated with full vegetation cover
and bare soil, respectively. For the study dates, Eq. (7) yields
vegetation cover fraction estimates on the order of 10–15 %
over Lucky Hills, ∼20–25% at Kendall and ∼55–65% for
the Charleston site — slightly lower than the nominal values
typically associated with these sites; this may be due to a drier
than normal conditions during the 2004 monsoon season. The
LAI was estimated using the following formulation (Choudh-
ury, 1987):

LAI ¼ � lnð1� fCÞ
0:5

ð8Þ

Apparent cover fraction at view angle ϕ is then obtained
with

fCðhÞ ¼ 1� exp
�0:5XðhÞLAI

cosðhÞ
� �

ð9Þ

where Ω(θ) is a directional clumping factor used to consider the
effect of clumped vegetation, which exists in many row crops
and natural landscapes (Anderson et al., 2005; Kustas &
Norman, 2000b). The directionality of Ω(θ) depends on canopy
architecture, as specified in Kustas and Norman (1999).

Atmospheric corrections to the at-satellite brightness tem-
peratures were estimated with the MODTRAN 4.1 radiative
transfer model (Berk et al., 1998), using radiosonde atmospher-
ic profiles of pressure, temperature and water vapor obtained
from nearby Tucson meteorological station (station number
23160, 32.12 N and 110.93 W, elevation 788 m) with a
correction for the difference in mean elevation between the
towers and meteorological station site. The derived TM surface
brightness temperatures were compared with tower-based IRT
observations taken at Lucky Hills, Kendall, and Charleston
(Fig. 5), yielding a root-mean-square difference (RMSD) of
1.55 °C. This suggests that relatively accurate atmospherically-
corrected surface temperatures were derived from the Landsat
Fig. 5. Comparison of Landsat versus ground-based surface brightness
temperatures for the three flux tower sites on the overpass days. Dashed line
represents perfect agreement.
thermal imagery. To convert brightness temperature to radio-
metric temperature, surface emissivity was estimated by
weighting the estimated soil and vegetation emissivities by
the local fractional cover, namely ελ≈εCfC+(1− fC) εS where
ελ is the composite emissivity, εC is the vegetated canopy
emissivity, εS is the soil emissivity (Li et al., 2004). Values of εC
and εS are assigned as 0.994 and 0.959, respectively according
to emissivity measurements conducted by Humes et al. (1994)
for this region.

3.4. Model inputs and variable/parameter values

Table 1 lists the key model variable/parameter values
assigned to the main land cover types: grassland, shrubland
and mesquite forest. With nominal canopy height, hC
estimated from land cover information and prior ground sur-
veys, the aerodynamic roughness, zO and displacement height,
dO are computed using simple ratio-based formulas, namely,
zO /hC=0.1 and dO /hC=0.67. Other model variables, including
Priestley–Taylor parameter αPT and fraction of green vegeta-
tion fG, were assigned the default values of 1.3 and 1,
respectively. A nominal value for the nadir clumping factor,
Ω(0)=0.8 for the shrubland and grassland and Ω(0)=1 for
the riparian mesquite woodland was assigned based on prior
applications of the TSM for this landscape (Kustas & Norman,
2000a). It should be noted that there was no a priori
calibration of any of the TSM parameters/variables, and
hence the same values or formulations used for the SMEX04
site were the same as those used for SMEX02 site (Li et al.,
2005) having very different climate and vegetation conditions
(corn and soybean production region in central Iowa).

Meteorological inputs to the TSM at the tower sites for the
three Landsat overpass dates are listed in Table 2. The Kendall
site tends to have the lowest air temperature and highest wind
speed observations due to its high elevation and high sensor
location (using 10 m observations) relative to the top of the
canopy (see Table 1). Differences in sensor heights between
tower locations are accommodated in the resistance formula-
tions for rX, rA and rS (Norman et al., 1995).

3.5. Data processing and analyses

3.5.1. Generation of multi-resolution satellite datasets
Remote sensing data at three different spatial resolutions

were employed to test the effect of input resolution on TSM flux



Table 2
Meteorological inputs to the TSM for the Landsat 5 imaging dates during
SMEX04

Flux tower site Overpass date u (m s−1) TA (C) eA (kPa) RS (W m−2)

Lucky Hills June 11 2.0 26.2 0.32 968
Kendall June 11 3.4 23.7 0.27 992
Charleston June 11 2.1 25.6 0.47 961
Lucky Hills July 29 4.2 28.2 1.13 882
Kendall July 29 5.2 25.6 1.18 913
Charleston July 29 3.0 28.5 1.56 875
Lucky Hills August 30 1.5 29.8 0.99 832
Kendall August 30 1.7 27.7 0.95 872
Charleston August 30 1.5 30.1 1.38 846

u: wind speed.
TA : air temperature.
eA: vapor pressure.
RS: incoming solar radiation.

Fig. 6. Schematic illustrating two-dimensional footprint model prediction of
weighted source-area contribution. Horizontal and vertical scales are in meters.
The circular isolines represent cumulative flux in percentage. Footprint model
output using 10 m height sensor measurements from Kendall on July 29, 2004.
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predictions: the 30 m resolution of the Landsat visible and near-
infrared (vis/NIR) bands, the 120 m resolution of the Landsat 5
thermal band, and 960 m, which is the nominal resolution of the
thermal band on MODIS. These resolutions span a range in
length scales inherent in the variability in landscape features for
this semiarid region, and also a range of current instrumental
resolutions associated with thermal remote sensing in native and
processed forms.

Thermal data at 30 m were bi-linearly interpolated from the
native 120 m resolution of the Landsat 5 thermal sensors and co-
registered with the vis/NIR band data — the standard data
format provided by the U.S. Geological Survey. While a more
rigorous technique described by Kustas et al. (2003) could have
been employed to spatially sharpen the thermal imagery to the
vis/NIR band resolutions, exploiting the natural correlations
that exist between surface temperature and vegetation indices
for many landscapes, Agam et al. (2007) demonstrate that
improvements in retrieval accuracy using sharpening are only
on the order of 1 °C at the higher resolutions.

At 30-m resolution, fine detail in vegetation cover patterns
associated with topographic and water-body features can be
detected. In moving up to the 120-m native resolution of
Landsat 5, we can examine whether model validation
significantly deteriorates and significant spatial contrast is
lost. This is important to investigate since ∼100 m is suggested
as the highest resolution for any thermal sensors that may be on
the next Landsat platform. Finally, 960-m resolution images
were created by uniformly aggregating the 120-m data to
represent the current operational thermal data available from
MODIS. At this resolution, we investigate the degree to which
spatial variation in modeled fluxes is lost and how model
validation using tower-based measurements is compromised
due to the significant mismatch in pixel resolution (∼1000 m)
versus size of source-area/flux-footprint (∼100 m).

3.5.2. Application of two-dimensional source-area footprint
model

A two-dimensional footprint model was used to estimate the
source area on the land-surface contributing to the eddy flux
measurements, and associated pixel weights used in integrating
gridded TSM fluxes to the observation footprint scale. The
model is based on Hsieh et al.'s (2000) one-dimensional model,
including a lateral dispersion formulation to simulated distribu-
tions in the cross-wind dimension (Detto et al., 2006). The basic
equation for the along-wind footprint model (estimating upwind
source contributions) can be expressed as:

f ðx; zmÞ ¼ 1
k2x2

DZ p
U jLj1�Pe

�DZ P
U

jLj1�P

k2x ð10Þ

where L is the Obukhov length, D and P are similarity constants
with different values for unstable, neutral and stable atmospheric
conditions (see Hsieh et al., 2000), x is the fetch in the upwind
direction, k is von Karman's constant, and ZU is a length scale
given by

ZU ¼ zmðlnðzm=zOÞ � 1þ zO=zmÞ ð11Þ
where zm is flux observation height and zO is the surface
roughness for momentum.

If lateral dispersion is added to the above footprint model,
then a 2-D source area function is generated. The 2-D footprint
model can be expressed as:

f ðx; y; zmÞ ¼ 1ffiffiffiffiffiffi
2p

p
ry

e
�0:5 y

ry

� �2

f ðx; zmÞ ð12Þ

where the standard deviation σy can be related to the standard
deviation in the lateral wind fluctuations as (Eckman, 1994)

ry ¼ a1zO
rv
u*

x
zO

� �p1

ð13Þ

where σv is the standard deviation of the cross wind velocity,
u⁎ is the friction velocity, and typical values for the model
parameters are a1=0.3 and p1=0.86. A schematic illustration
of a typical flux footprint generated by this code is shown in
Fig. 6 using tower measurements from the Kendall site for
July 29.

In the comparisons shown below between modeled and
measured fluxes, the gridded model output has been integrated
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as a weighted sum output over the tower source area PðFLUXÞ
via the following expression:

PFLUX ¼

Xn
i¼1

f ðxi; yi; zmÞFLUXðxi; yiÞ
Pn
i¼1

f ðxi; yi; zmÞ
ð14Þ

where i indicates a pixel in the model grid at location xi, yi.
Note that the ability to resolve the footprint is degraded at
coarser model grid scales.
Fig. 7. Spatial distribution of LE (W m−2) computed for a ∼3×3 km area surroundin
one of the monsoon season overpasses, July 29 2004. The oval shaped areas outlined
the tower eddy flux measurements estimated via Eq. (12).
4. Results

4.1. Spatial variability in modeled flux as a function of resolution

In Fig. 7, the spatial patterns in latent heating as computed by
the TSM are illustrated for the ∼3×3 km (more precisely
2.88×2.88 km) grids surrounding each of the tower locations at
the three resolutions. Fields of LE are shown for two days; one
representative of the dry season (June 11, 2004) and the other
showing conditions typical of the monsoon season (July 29,
g the three tower locations for the (a) dry season overpass, June 11, 2004 (b) for
in white represent upwind two-dimensional source area patches contributing to



Fig. 7 (continued ).
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2004), after rains caused the landscape to green up (see also
Fig. 3). Also illustrated on these images is the approximate
source-area footprint upwind of the EC tower, as estimated by
Eq. (12). The size of the footprint in each case depends
on sensor height, local roughness and wind speed/stability
conditions.

The high resolution output from the TSM (30 m) shows
significant spatial variability, especially around the Charleston
site where the latent heat flux ranges between 100 and 500 W
m−2 for the image during the monsoon season. Although some
spatial information is lost at the 120 m resolution, the general
patterns and range in magnitudes in LE are preserved. At 960 m
resolution, however, the variability in LE is dramatically
reduced, and the spatial structures in the landscape are
obscured. In most cases at 960 m, the flux footprint is
encompassed in a single pixel; consequently, there is no
differential weighting of the high-resolution structure in LE
observed at the Charleston and Kendall sites. At Lucky Hills,
the relatively uniform distribution of shrubs and other
vegetation cover creates a relatively homogeneous pattern in
LE at the 101–102 m scale. The Kendall site shows greater
spatial variation in latent heating reflecting spatial patterns in
land cover (grassland versus shrubs), particularly for the July 29
overpass (see Fig. 3). The Charleston site, which includes both
riparian mesquite forest and upland desert shrubs and grasses,
exhibits the greatest spatial variation in LE. Unfortunately, a



Fig. 8. Comparison between flux tower observations and TSM modeled output
at different resolution scales: a) 30 m, b) 120 m, c) 960 m. Note LE is adjusted to
ensure closure by the residual method, LERE (see text for details). Dashed line
represents perfect agreement.
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semivariogram analysis of spatial structure in the TSM flux
fields, as performed by Kim et al. (2006), could not be
conducted with these datasets due to the relatively large pixel
size (30 m) compared to the length scales of variability in
canopy cover (plant spacing) and other important surface states
and landscape features, which were on the order of 1–10 m
(Moran et al., 1997). Hence it was not possible to resolve
important structures, such as the range, in the semivariogram.

With the higher resolution data (30 and 120 m), the TSM can
even detect vegetation stress (patches with low LE) around the
riparian site (Charleston) during the dry season (compare Fig. 7a
and b). Stress can occur here when there is a prolonged drought
and the riparian vegetation has exhausted available water deeper
in the soil profile. Patches of grass and smaller shrubs that exist
within the riparian corridor would bemost susceptible to drought
during the dry season due to shallow rooting depths in
comparison with the taller mesquite trees (see Fig. 3). With the
960-m resolution data, the TSM is unable to detect stressed
conditions unless they cover a significantly larger area of the
landscape.

4.2. Model validation

4.2.1. High resolution
Comparison of the TSM output using the high (30 m)

resolution data versus tower-based fluxes yields relatively close
agreement (see Fig. 8a) with root mean square difference
(RMSD) values between 20 and 35 W m−2 (see Table 3). These
RMSD values are similar to results obtained by Li et al. (2005)
applying the TSM with Landsat data over a corn and soybean
production region in central Iowa during SMEX02. Signifi-
cantly greater discrepancies (RMSD ∼100 W m−2) are
obtained between modeled and measured LE without closure
at all three resolutions. This artificial inflation of model-
measurement differences is mainly due to the relatively large
magnitude of the closure residual (∼80 W m−2) causing a
significant bias between modeled and measured LE, as has been
observed in other studies (e.g., Crow et al., 2005; Li et al.,
2005). However, since TSM requires energy conservation, a
requisite condition for any energy balance model, to maintain
consistency the measurements need to also conform to this
physical constraint (Twine et al., 2000).

The fact that the TSM can be applied to both arid and humid
climatic regions supporting very different vegetation types
(crops versus natural vegetation), cover and density, yielding
similar results with no in situ model calibration of extra
Table 3
Difference statistics (RMSD) comparing flux tower measurements and TSM
estimates of net radiation, (Rn), soil heat flux (G), sensible heat flux (H) and
latent heat flux (LE) at three different pixel resolutions

Resolution (m) Rn (W m−2) G (W m−2) H (W m−2) LERE (W m−2)

30 27 18 33 34
120 27 18 33 32
960 36 29 40 69

Note that model-measurement comparisons for LE are made with forcing
closure by residual for the eddy covariance data.



Fig. 9. Comparison TSM predictions of H and LE using high (30 m) and low
(960 m) resolution thermal data for the three overpass days, integrated over the
estimated tower source areas at Kendall (KE), Lucky Hills (LH) and Charleston
(CH). Dashed line represents perfect agreement.
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resistance parameters provides strong evidence of the robust-
ness of the TSM formulation. Moreover, although TSM uses the
Priestley–Taylor approximation as an initial guess for the
canopy transpiration flux, which may not seem appropriate for
the semi-arid climate of Arizona, the system latent heat fluxes
predicted by the model are quite reasonable. The model has a
built-in mechanism for throttling αPT back from its potential
value when conditions of vegetation stress are detected (Kustas
et al., 2004b). For the June 11 overpass, during the dry season
when stress might be expected, the TSM predicted a decrease in
the αPT value from 1.3 to∼0.75 for the Kendall site and to∼1.1
for the Charleston site (average for the estimated flux footprint/
source-area), while Lucky Hills site having relatively low cover,
did not require a reduction in the αPT value. The general utility
of the TSM for a wide variety of environmental conditions and
landscape properties has been supported in earlier studies using
ground-based TR observations, particularly when compared to
other thermal-based models that do not explicitly parameterize
soil and vegetation temperatures and energy exchange (e.g.,
Zhan et al., 1996).

4.2.2. Resolution effects
Model output at 30, 120 and 960-m resolution is compared to

the flux measurements from the three flux tower sites in Fig. 8a,
b, and c, respectively, with RMSD values tabulated in Table 3.
The results in Fig. 8a and b indicate that both the 30 and 120-m
resolution output from the TSM is in good agreement with the
tower flux measurements when the energy budget residual
correction is applied to the latent heating observations (LERE).
However, when the resolution is degraded to that of the MODIS
thermal band, the agreement with observations deteriorates,
especially for the turbulent fluxes LE and H (Fig. 8c) and for the
Charleston site in particular, represented by the points furthest
from the 1:1 line in Fig. 8c.

At 960-m resolution, pixels are invariably a mixture of
vegetation types and cover fractions. This is particularly the case
for the Charleston site, where the width of the riparian zone is
typically on the order of 50 to 500 m. Consequently, with such
coarse resolution it is impossible to capture a representative range
in LE over the riparian area. Furthermore, since according to the
footprint model 90% of the upwind source-area affecting the eddy
flux measurements was within 500 m of the tower, with peak
contributions occurring within 100 m, there is a serious mismatch
between the model-measurement resolutions at the MODIS
thermal pixel scale (Figs. 6 and 7). The footprint is well-resolved
at 30 m, and marginally resolved at 120 m, so high-resolution
structure in the surface flux patterns influencing EC observations
can be captured reasonably at these resolutions. Using the thermal
sharpening technique of Kustas et al. (2003), 1-km thermal
images fromMODIS could be sharpened to the 250 m resolution
of the MODIS NDVI product. However for standard flux tower
measurements collected a few meters above the canopy under
typical daytime convective conditions, the footprint model
indicates that 250 m TR data are still too coarse to capture any
significant flux variability within the source-area/flux-footprint.

The statistical results listed in Table 3 support these
conclusions regarding optimal resolutions for model validation.
The RMSD between modeled and measured LE, for example, is
similar for the 30 and 120-m resolution simulations (∼30Wm−2)
but is nearly double at 960-m resolution (∼70Wm−2). Clearly, a
meaningful assessment of intrinsic model accuracy is not possible
when there is significant spatial variability in surface conditions
and fluxes at length scales an order of magnitude less than the
resolution of the key remotely sensed inputs to the land surface
model.

In Fig. 9, TSM estimates of the turbulent fluxes at the high
(30 m) resolution integrated over the source-area footprint
(Eq. (14)) are compared with fluxes from the low resolution
(960 m) simulation in the pixel encompassing the tower site (at
that scale, the extent of the source area lies within a single pixel).
This comparison clearly shows that, for certain landscapes, the
TSM can yield significantly different flux estimates depending on
grid resolution. For the relatively homogeneous areas containing



348 F. Li et al. / Remote Sensing of Environment 112 (2008) 337–349
essentially a single land cover and no abrupt changes in fractional
vegetation cover (e.g., LuckyHills) the difference inmodel output
between high and coarse resolutions is minor. For riparian sites
such as Charleston, which show the largest intrinsic variability in
surface temperature and vegetation cover conditions owing to
marked changes in land cover class over distances ranging from
50 to 500 m, the differences at the two resolutions are as high as
200 W m−2 for LE. These findings are in agreement with results
reported by Moran et al. (1997) who found significant
discrepancies in the heat fluxes caused by aggregation errors
(i.e., using fine versus coarse resolution remote sensing inputs) for
this landscape.

5. Conclusions

Both in the validation of remote sensing-based land surface
models with tower observations and in discriminating spatial
patterns of latent heat flux due to land cover/land use and
moisture/vegetation condition, a pixel resolution on the order of
10 m is highly desirable, although ∼100 m pixel resolution still
provides useful information on the spatial pattern and degree of
contrast in range in moisture/vegetation conditions. At MODIS
thermal resolution (∼1000 m), much of the spatial variation in
key TSM inputs (vegetation cover and surface temperature) is
lost resulting in greater likelihood for large discrepancies with
flux tower observations. This is due not only to the scale/
resolution mismatch with source-area contributing eddy
covariance sensor measurements (∼100 m), but also errors in
specification of the key model inputs for such mixed pixels,
particularly when a pixel contains a riparian area adjacent to
desert shrubland (Kustas & Norman, 2000a).

This study indicates that for landscapes containing significant
fine scale (b1 km) variability in vegetation conditions (including
cover amount, type and stress condition), the use of MODIS-
resolution thermal data in a remote sensing-based model such as
the TSM gives sub-optimal results.

Many landscapes have significant land use/land cover changes
at the 102 m scale. This was the motivation for MODIS having a
250m resolution visible/near-infrared band (Townshend& Justice,
1988). The thermal resolution of MODIS used with remote
sensing-based energy balance model is too coarse for discriminat-
ing sharp contrasts in flux patterns caused by changes in land cover/
land use or other environmental factors. A thermal sensor needs to
have at least∼100 m resolution to facilitate model validation with
respect to flux tower measurements and to detect significant
changes in surface energy balance/flux partitioning between heat
andwater vapor. Currently, there are no plans to support such a high
resolution thermal sensor on any future satellite platforms,
including Landsat. Without such high resolution thermal data,
remote sensing-based land surface models will have limited utility
in assessing water use, vegetation stress, and other environmental
metrics for agricultural and naturally heterogeneous landscapes.
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